

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 1

CHAPTER- 1

INTRODUCTION

1.1 What is cloud computing?

 Cloud computing is the use of computing resources (hardware and software) that are

delivered as a service over a network (typically the Internet). The name comes from the

common use of a cloud-shaped symbol as an abstraction for the complex infrastructure it

contains in system diagrams. Cloud computing entrusts remote services with a user's

data, software and computation. Cloud computing consists of hardware and software

resources made available on the Internet as managed third-party services. These services

typically provide access to advanced software applications and high-end networks of

server computers.

Figure 1.1: Structure of cloud computing

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Internet

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 2

1.1.1 How Cloud Computing Works?

The goal of cloud computing is to apply traditional supercomputing, or high-performance

computing power, normally used by military and research facilities, to perform tens of

trillions of computations per second, in consumer-oriented applications such as financial

portfolios, to deliver personalized information, to provide data storage or to power large,

immersive computer games.

The cloud computing uses networks of large groups of servers typically running low-cost

consumer PC technology with specialized connections to spread data-processing chores

across them. This shared IT infrastructure contains large pools of systems that are linked

together. Often, virtualization techniques are used to maximize the power of cloud

computing.

1.1.2 Characteristics:

 The salient characteristics of cloud computing based on the definitions

provided by the National Institute of Standards and Terminology (NIST) are outlined

below:

 On-demand self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service’s provider.

 Broad network access: Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick

client platforms (e.g., mobile phones, laptops, and PDAs).

 Resource pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

There is a sense of location-independence in that the customer generally has no

control or knowledge over the exact location of the provided resources but may be

able to specify location at a higher level of abstraction (e.g., country, state, or data

http://www.webopedia.com/TERM/S/supercomputer.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/I/IT.html
http://www.webopedia.com/TERM/V/virtualization.html

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 3

center). Examples of resources include storage, processing, memory, network

bandwidth, and virtual machines.

 Rapid elasticity: Capabilities can be rapidly and elastically provisioned, in some

cases automatically, to quickly scale out and rapidly released to quickly scale in.

To the consumer, the capabilities available for provisioning often appear to be

unlimited and can be purchased in any quantity at any time.

 Measured service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate to

the type of service (e.g., storage, processing, bandwidth, and active user

accounts). Resource usage can be managed, controlled, and reported providing

transparency for both the provider and consumer of the utilized service.

1.1.3 Benefits of cloud computing:

1. Achieve economies of scale – increase volume output or productivity with fewer

people. Your cost per unit, project or product plummets.

2. Reduce spending on technology infrastructure. Maintain easy access to your

information with minimal upfront spending. Pay as you go (weekly, quarterly or

yearly), based on demand.

3. Globalize your workforce on the cheap. People worldwide can access the cloud,

provided they have an Internet connection.

4. Streamline processes. Get more work done in less time with less people.

5. Reduce capital costs. There’s no need to spend big money on hardware, software

or licensing fees.

6. Improve accessibility. You have access anytime, anywhere, making your life so

much easier!

7. Monitor projects more effectively. Stay within budget and ahead of completion

cycle times.

8. Less personnel training is needed. It takes fewer people to do more work on a

cloud, with a minimal learning curve on hardware and software issues.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 4

9. Minimize licensing new software. Stretch and grow without the need to buy

expensive software licenses or programs.

10. Improve flexibility. You can change direction without serious “people” or

“financial” issues at stake.

1.1.4 Advantages:

1. Price: Pay for only the resources used.

2. Security: Cloud instances are isolated in the network from other instances for

improved security.

3. Performance: Instances can be added instantly for improved performance.

Clients have access to the total resources of the Cloud’s core hardware.

4. Scalability: Auto-deploy cloud instances when needed.

5. Uptime: Uses multiple servers for maximum redundancies. In case of server

failure, instances can be automatically created on another server.

6. Control: Able to login from any location. Server snapshot and a software library

lets you deploy custom instances.

7. Traffic: Deals with spike in traffic with quick deployment of additional instances

to handle the load.

1.2 OBJECTIVES

1. Input Design is the process of converting a user-oriented description of the input into a

computer-based system. This design is important to avoid errors in the data input process

and show the correct direction to the management for getting correct information from

the computerized system.

2. It is achieved by creating user-friendly screens for the data entry to handle large

volume of data. The goal of designing input is to make data entry easier and to be free

from errors. The data entry screen is designed in such a way that all the data manipulates

can be performed. It also provides record viewing facilities.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 5

3. When the data is entered it will check for its validity. Data can be entered with the help

of screens. Appropriate messages are provided as when needed so that the user will not

be in maize of instant. Thus the objective of input design is to create an input layout that

is easy to follow.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 6

CHAPTER- 2

LITERATURE SURVEY

2.1 INTRODUCTION

Literature survey deals with the process of defining the functions of existing

system. To create or develop a new system and study the prior system, Analysis difficult

problems faced by that system. The disadvantages of existing system are discussed to

prove the way of proposed system. Then the proposed system is defined for the problem

and the advantages of the proposed system are also defined.

2.2 RELATED WORK

The concept of identity-based encryption was introduced by Shamir , and conveniently

instantiated by Boneh and Franklin . IBE eliminates the need for providing a public key

infrastructure (PKI). Regardless of the setting of IBE or PKI, there must be an approach

to revoke users from the system when necessary, e.g., the authority of some user is

expired or the secret key of some user is disclosed. In the traditional PKI setting, the

problem of revocation has been well studied and several techniques are widely approved,

such as certificate revocation list or appending validity periods to certificates. However,

there are only a few studies on revocation in the setting of IBE. Boneh and Franklin first

proposed a natural revocation way for IBE. They appended the current time period to the

ciphertext, and non-revoked users periodically received private keys for each time period

from the key authority. Unfortunately, such a solution is not scalable, since it requires the

key authority to perform linear work in the number of non-revoked users. In addition, a

secure channel is essential for the key authority and non-revoked users to transmit new

keys. To conquer this problem, Boldyreva, Goyal and Kumar introduced a novel

approach to achieve efficient revocation. They used a binary tree to manage identity such

that their RIBE scheme reduces the complexity of key revocation to logarithmic (instead

of linear) in the maximum number of system users. However, this scheme only achieves

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 7

selective security. Subsequently, by using the aforementioned revocation technique,

Libert and Vergnaud proposed an adaptively secure RIBE scheme based on a variant of

Water’s IBE scheme , Chen et al. constructed a RIBE scheme from lattices. Recently,

Seo and Emura proposed an efficient RIBE scheme resistant to a realistic threat called

decryption key exposure, which means that the disclosure of decryption key for current

time period has no effect on the security of decryption keys for other time periods.

Inspired by the above work and, Liang et al. introduced a cloud-based revocable identity-

based proxy re-encryption that supports user revocation and ciphertext update. To reduce

the complexity of revocation, they utilized a broadcast encryption scheme to encrypt the

ciphertext of the update key, which is independent of users, such that only non-revoked

users can decrypt the update key. However, this kind of revocation method cannot resist

the collusion of revoked users and malicious non-revoked users as malicious nonrevoked

users can share the update key with those revoked users. Furthermore, to update the

ciphertext, the key authority in their scheme needs to maintain a table for each user to

produce the re-encryption key for each time period, which significantly increases the key

authority’s workload.

2.3 Existing System

 Boneh and Franklin first proposed a natural revocation way for IBE. They

appended the current time period to the ciphertext, and non-revoked users

periodically received private keys for each time period from the key authority.

 Boldyreva, Goyal and Kumar introduced a novel approach to achieve efficient

revocation. They used a binary tree to manage identity such that their RIBE

scheme reduces the complexity of key revocation to logarithmic (instead of

linear) in the maximum number of system users.

 Subsequently, by using the aforementioned revocation technique, Libert and

Vergnaud proposed an adaptively secure RIBE scheme based on a variant of

Water’s IBE scheme.

 Chen et al. constructed a RIBE scheme from lattices.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 8

2.4 Disadvantages of Existing System:

 Unfortunately, existing solution is not scalable, since it requires the key authority

to perform linear work in the number of non-revoked users. In addition, a secure

channel is essential for the key authority and non-revoked users to transmit new

keys.

 However, existing scheme only achieves selective security.

 This kind of revocation method cannot resist the collusion of revoked users and

malicious non-revoked users as malicious non-revoked users can share the update

key with those revoked users.

 Furthermore, to update the ciphertext, the key authority in their scheme needs to

maintain a table for each user to produce the re-encryption key for each time

period, which significantly increases the key authority’s workload.

2.5 Proposed System:

 It seems that the concept of revocable identity-based encryption (RIBE) might be

a promising approach that fulfills the aforementioned security requirements for

data sharing.

 RIBE features a mechanism that enables a sender to append the current time

period to the ciphertext such that the receiver can decrypt the ciphertext only

under the condition that he/she is not revoked at that time period.

 A RIBE-based data sharing system works as follows:

 Step 1: The data provider (e.g., David) first decides the users (e.g., Alice and Bob)

who can share the data. Then, David encrypts the data under the identities Alice

and Bob, and uploads the ciphertext of the shared data to the cloud server.

 Step 2: When either Alice or Bob wants to get the shared data, she or he can

download and decrypt the corresponding ciphertext. However, for an

unauthorized user and the cloud server, the plaintext of the shared data is not

available.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 9

 Step 3: In some cases, e.g., Alice’s authorization gets expired, David can

download the ciphertext of the shared data, and then decrypt-then-re-encrypt the

shared data such that Alice is prevented from accessing the plaintext of the shared

data, and then upload the re-encrypted data to the cloud server again.

2.6 ADVANTAGES OF PROPOSED SYSTEM:

 We provide formal definitions for RS-IBE and its corresponding security model;

 We present a concrete construction of RS-IBE.

 The proposed scheme can provide confidentiality and backward/forward2 secrecy

simultaneously

 We prove the security of the proposed scheme in the standard model, under the

decisional ℓ-Bilinear Diffie-Hellman Exponent (ℓ-BDHE) assumption. In

addition, the proposed scheme can withstand decryption key exposure

 The procedure of cipher text update only needs public information. Note that no

previous identity-based encryption schemes in the literature can provide this

feature;

 The additional computation and storage complexity, which are brought in by the

forward secrecy, is all upper bounded by O(log(T)2), where T is the total number

of time periods.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 10

CHAPTER- 3

 SYSTEM DESIGN

3.1 MODULES:

 System Construction Module

 Data Provider

 Cloud User

 Key Authority (Auditor)

3.2 MODULES DESCSRIPTION:

 System Construction Module

In the first module, we develop the proposed system with the required entities for the

evaluation of the proposed model. The data provider (e.g., David) first decides the

users (e.g., Alice and Bob) who can share the data. Then, David encrypts the data

under the identities Alice and Bob, and uploads the cipher text of the shared data to

the cloud server. When either Alice or Bob wants to get the shared data, she or he can

download and decrypt the corresponding cipher text. However, for an unauthorized

user and the cloud server, the plaintext of the shared data is not available.

 Data Provider

In this module, we develop the Data Provider module. The data provider module is

developed such that the new users will Signup initially and then Login for

authentication. The data provider module provides the option of uploading the file to

the Cloud Server. The process of File Uploading to the cloud Server is undergone

with Identity-based encryption format. Data Provider will check the progress status of

the file upload by him/her. Data Provider provided with the features of Revocation

and Ciphertext update the file. Once after completion of the process, the Data

Provider logouts the session.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 11

 Cloud User

In this module, we develop the Cloud User module. The Cloud user module is

developed such that the new users will Signup initially and then Login for

authentication. The Cloud user is provided with the option of file search. Then cloud

user feature is added up for send the Request to Auditor for the File access. After

getting decrypt key from the Auditor, he/she can access to the File. The cloud user is

also enabled to download the File. After completion of the process, the user logout

the session.

 Key Authority (Auditor)

Auditor Will Login on the Auditor's page. He/she will check the pending requests of

any of the above person. After accepting the request from the above person, he/she

will generate master key for encrypt and Secret key for decrypt. After the complete

process, the Auditor logout the session.

3.3 UML DIAGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-

purpose modeling language in the field of object-oriented software engineering. The

standard is managed, and was created by, the Object Management Group.

The goal is for UML to become a common language for creating models of object

oriented computer software. In its current form UML is comprised of two major

components: a Meta-model and a notation. In the future, some form of method or process

may also be added to; or associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business

modeling and other non-software systems.

The UML represents a collection of best engineering practices that have proven

successful in the modeling of large and complex systems.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 12

 The UML is a very important part of developing objects oriented software and the

software development process. The UML uses mostly graphical notations to express the

design of software projects.

GOALS:

 The Primary goals in the design of the UML are as follows:

1. Provide users a ready-to-use, expressive visual modeling Language so that they

can develop and exchange meaningful models.

2. Provide extendibility and specialization mechanisms to extend the core concepts.

3. Be independent of particular programming languages and development process.

4. Provide a formal basis for understanding the modeling language.

5. Encourage the growth of OO tools market.

6. Support higher level development concepts such as collaborations, frameworks,

patterns and components.

7. Integrate best practices.

3.3.1 USE CASE DIAGRAM:

A use case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its purpose is to

present a graphical overview of the functionality provided by a system in terms of actors,

their goals (represented as use cases), and any dependencies between those use cases. The

main purpose of a use case diagram is to show what system functions are performed for

which actor. Roles of the actors in the system can be depicted.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 13

Figure 3.1: Use case diagram.

3.3.2 CLASS DIAGRAM:

 In software engineering, a class diagram in the Unified

Modeling Language (UML) is a type of static structure diagram that describes the

structure of a system by showing the system's classes, their attributes, operations (or

methods), and the relationships among the classes. It explains which class contains

information.

 User

Data Provider

Key Authority

Registration

Login

Send Request key

Ciphertext update

File View

Encrypt file upload to cloud

Verification

File Download

Secret Key Send to User

View request

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 14

 Figure 3.2: Class diagram.

3.3.3 SEQUENCE DIAGRAM:

A sequence diagram in Unified Modeling Language (UML) is a kind of

interaction diagram that shows how processes operate with one another and in what

order. It is a construct of a Message Sequence Chart. Sequence diagrams are sometimes

called event diagrams, event scenarios, and timing diagrams.

View Request ()

Secret Key Generate ()

KEY AUTHORITY

DATA OWNER
USER

Owner Name
User Name

File Upload to cloud ()

Update Ciphertext ()

View File ().

File view ()

Send request ()

Verification ()

File Download ()

USER

Login

 File view ()

 Send request ()

 Verification ()

 File Download ()

DATA OWNER

 Login

File Upload to cloud ()

Update Ciphertext ()

View File ().

 View Request ()

 Secret Key Generate ()

Auditor Name

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 15

 Figure 3.3: Sequence diagram.

DATA BASE

Data Base

File Upload to Cloud

Revocation and

Update the File

USER Key Authority

Data Provider

Key Management File View

Request Sent

Response

File Download

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 16

3.3.4 ACTIVITY DIAGRAM:

Activity diagrams are graphical representations of workflows of stepwise

activities and actions with support for choice, iteration and concurrency. In the Unified

Modeling Language, activity diagrams can be used to describe the business and

operational step-by-step workflows of components in a system. An activity diagram

shows the overall flow of control.

Figure 3.4: Activity diagram

Start

Revocation and

Ciphertext update

Download file

Data

Provider

User

LOGIN

LOGIN

Key

Authority

Verification

LOGIN

Encrypt file

Upload to cloud

View Request

Generate Secret

Key

View File

Sent Request

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 17

CHAPTER- 4

IMPLEMENTATION

 4.1 Technologies used:

4.1.1 Java Technology

Java technology is both a programming language and a platform.

The Java programming language is a high-level language that can be characterized by all

of the following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

 Multithreaded

 Robust

 Dynamic

 Secure

With most programming languages, you either compile or interpret a program so

that you can run it on your computer. The Java programming language is unusual in that

a program is both compiled and interpreted. With the compiler, first you translate a

program into an intermediate language called Java byte codes —the platform-

independent codes interpreted by the interpreter on the Java platform. The interpreter

parses and runs each Java byte code instruction on the computer. Compilation happens

just once; interpretation occurs each time the program is executed. The following figure

illustrates how this works.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 18

 Figure 4.1: Java compilation

You can think of Java byte codes as the machine code instructions for the Java

Virtual Machine (Java VM). Every Java interpreter, whether it’s a development tool or a

Web browser that can run applets, is an implementation of the Java VM. Java byte codes

help make “write once, run anywhere” possible. You can compile your program into byte

codes on any platform that has a Java compiler. The byte codes can then be run on any

implementation of the Java VM. That means that as long as a computer has a Java VM,

the same program written in the Java programming language can run on Windows 2000,

a Solaris workstation, or on an iMac.

Figure 4.2: Java Virtual machine

The Java Platform:

A platform is the hardware or software environment in which a program runs.

We’ve already mentioned some of the most popular platforms like Windows 2000,

Linux, Solaris, and MacOS. Most platforms can be described as a combination of the

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 19

operating system and hardware. The Java platform differs from most other platforms in

that it’s a software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for the Java platform and is

ported onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that

provide many useful capabilities, such as graphical user interface (GUI) widgets. The

Java API is grouped into libraries of related classes and interfaces; these libraries are

known as packages. The next section, What Can Java Technology Do? Highlights what

functionality some of the packages in the Java API provide.

The following figure depicts a program that’s running on the Java platform. As the figure

shows, the Java API and the virtual machine insulate the program from the hardware.

Figure 4.3: Java platform

Native code is code that after you compile it, the compiled code runs on a specific

hardware platform. As a platform-independent environment, the Java platform can be a

bit slower than native code. However, smart compilers, well-tuned interpreters, and just-

in-time byte code compilers can bring performance close to that of native code without

threatening portability.

4.1.2 What Can Java Technology Do?

The most common types of programs written in the Java programming language

are applets and applications. If you’ve surfed the Web, you’re probably already familiar

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 20

with applets. An applet is a program that adheres to certain conventions that allow it to

run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining

applets for the Web. The general-purpose, high-level Java programming language is also

a powerful software platform. Using the generous API, you can write many types of

programs.

An application is a standalone program that runs directly on the Java platform. A

special kind of application known as a server serves and supports clients on a network.

Examples of servers are Web servers, proxy servers, mail servers, and print servers.

Another specialized program is a servlet. A servlet can almost be thought of as an applet

that runs on the server side. Java Servlets are a popular choice for building interactive

web applications, replacing the use of CGI scripts. Servlets are similar to applets in that

they are runtime extensions of applications. Instead of working in browsers, though,

servlets run within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so with packages

of software components that provides a wide range of functionality. Every full

implementation of the Java platform gives you the following features:

 The essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control Protocol), UDP (User

Data gram Protocol) sockets, and IP (Internet Protocol) addresses.

 Internationalization: Help for writing programs that can be localized for

users worldwide. Programs can automatically adapt to specific locales and

be displayed in the appropriate language.

 Security: Both low level and high level, including electronic signatures,

public and private key management, access control, and certificates.

 Software components: Known as JavaBeansTM, can plug into existing

component architectures.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 21

 Object serialization: Allows lightweight persistence and communication

via Remote Method Invocation (RMI).

 Java Database Connectivity (JDBCTM): Provides uniform access to a

wide range of relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers,

collaboration, telephony, speech, animation, and more. The following figure

depicts what is included in the Java 2 SDK.

Figure 4.4: Java database connectivity.

4.1.3 ODBC

Microsoft Open Database Connectivity (ODBC) is a standard programming

interface for application developers and database systems providers. Before ODBC

became a de facto standard for Windows programs to interface with database systems,

programmers had to use proprietary languages for each database they wanted to connect

to. Now, ODBC has made the choice of the database system almost irrelevant from a

coding perspective, which is as it should be. Application developers have much more

important things to worry about than the syntax that is needed to port their program from

one database to another when business needs suddenly change.

Through the ODBC Administrator in Control Panel, you can specify the particular

database that is associated with a data source that an ODBC application program is

written to use. Think of an ODBC data source as a door with a name on it. Each door will

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 22

lead you to a particular database. For example, the data source named Sales Figures

might be a SQL Server database, whereas the Accounts Payable data source could refer

to an Access database. The physical database referred to by a data source can reside

anywhere on the LAN.

The ODBC system files are not installed on your system by Windows 95. Rather,

they are installed when you setup a separate database application, such as SQL Server

Client or Visual Basic 4.0. When the ODBC icon is installed in Control Panel, it uses a

file called ODBCINST.DLL. It is also possible to administer your ODBC data sources

through a stand-alone program called ODBCADM.EXE. There is a 16-bit and a 32-bit

version of this program and each maintains a separate list of ODBC data sources.

From a programming perspective, the beauty of ODBC is that the application can be

written to use the same set of function calls to interface with any data source, regardless

of the database vendor. The source code of the application doesn’t change whether it

talks to Oracle or SQL Server. We only mention these two as an example. There are

ODBC drivers available for several dozen popular database systems. Even Excel

spreadsheets and plain text files can be turned into data sources. The operating system

uses the Registry information written by ODBC Administrator to determine which low-

level ODBC drivers are needed to talk to the data source (such as the interface to Oracle

or SQL Server). The loading of the ODBC drivers is transparent to the ODBC application

program. In a client/server environment, the ODBC API even handles many of the

network issues for the application programmer.

The advantages of this scheme are so numerous that you are probably thinking

there must be some catch. The only disadvantage of ODBC is that it isn’t as efficient as

talking directly to the native database interface. ODBC has had many detractors make the

charge that it is too slow. Microsoft has always claimed that the critical factor in

performance is the quality of the driver software that is used. In our humble opinion, this

is true. The availability of good ODBC drivers has improved a great deal recently. And

anyway, the criticism about performance is somewhat analogous to those who said that

compilers would never match the speed of pure assembly language. Maybe not, but the

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 23

compiler (or ODBC) gives you the opportunity to write cleaner programs, which means

you finish sooner. Meanwhile, computers get faster every year.

4.1.4 JDBC

In an effort to set an independent database standard API for Java; Sun

Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic

SQL database access mechanism that provides a consistent interface to a variety of

RDBMSs. This consistent interface is achieved through the use of “plug-in” database

connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he

or she must provide the driver for each platform that the database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC.

As you discovered earlier in this chapter, ODBC has widespread support on a variety of

platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market

much faster than developing a completely new connectivity solution.

JDBC was announced in March of 1996. It was released for a 90 day public

review that ended June 8, 1996. Because of user input, the final JDBC v1.0 specification

was released soon after.

The remainder of this section will cover enough information about JDBC for you to know

what it is about and how to use it effectively. This is by no means a complete overview of

JDBC. That would fill an entire book.

4.1.5 JDBC Goals

Few software packages are designed without goals in mind. JDBC is one that,

because of its many goals, drove the development of the API. These goals, in conjunction

with early reviewer feedback, have finalized the JDBC class library into a solid

framework for building database applications in Java.

The goals that were set for JDBC are important. They will give you some insight as to

why certain classes and functionalities behave the way they do. The eight design goals

for JDBC are as follows:

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 24

1. SQL Level API

 The designers felt that their main goal was to define a SQL interface for Java.

Although not the lowest database interface level possible, it is at a low enough level

for higher-level tools and APIs to be created. Conversely, it is at a high enough level

for application programmers to use it confidently. Attaining this goal allows for

future tool vendors to “generate” JDBC code and to hide many of JDBC’s

complexities from the end user.

2. SQL Conformance

SQL syntax varies as you move from database vendor to database vendor. In an

effort to support a wide variety of vendors, JDBC will allow any query statement to

be passed through it to the underlying database driver. This allows the connectivity

module to handle non-standard functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database interfaces

 The JDBC SQL API must “sit” on top of other common SQL level APIs. This

goal allows JDBC to use existing ODBC level drivers by the use of a software

interface. This interface would translate JDBC calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the Java system

Because of Java’s acceptance in the user community thus far, the designers feel

that they should not stray from the current design of the core Java system.

5. Keep it simple

This goal probably appears in all software design goal listings. JDBC is no

exception. Sun felt that the design of JDBC should be very simple, allowing for only

one method of completing a task per mechanism. Allowing duplicate functionality

only serves to confuse the users of the API.

6. Use strong, static typing wherever possible

 Strong typing allows for more error checking to be done at compile time; also,

less error appear at runtime.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 25

7. Keep the common cases simple

 Because more often than not, the usual SQL calls used by the programmer are

simple SELECT’s, INSERT’s, DELETE’s and UPDATE’s, these queries should be

simple to perform with JDBC. However, more complex SQL statements should also

be possible.

Finally we decided to proceed the implementation using Java Networking.

And for dynamically updating the cache table we go for MS Access database

Java ha two things: a programming language and a platform.

 Java is a high-level programming language that is all of the following

 Simple Architecture-neutral

 Object-oriented Portable

Distributed High-performance

 Interpreted multithreaded

 Robust Dynamic

 Secure

Java is also unusual in that each Java program is both compiled and interpreted.

With a compile you translate a Java program into an intermediate language

called Java byte codes the platform-independent code instruction is passed and

run on the computer.

Compilation happens just once; interpretation occurs each time the program is

executed. The figure illustrates how this works.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 26

Figure 4.5: Java platform execution

You can think of Java byte codes as the machine code instructions for the

Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java

development tool or a Web browser that can run Java applets, is an

implementation of the Java VM. The Java VM can also be implemented in

hardware.Java byte codes help make “write once, run anywhere” possible. You

can compile your Java program into byte codes on my platform that has a Java

compiler. The byte codes can then be run any implementation of the Java VM.

For example, the same Java program can run Windows NT, Solaris, and

Macintosh.

4.2 SAMPLE CODE:

Reg.jsp:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

 <style>

Java Program

Compilers

Interpreter

My Program

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 27

.inputs {

 background: #f5f5f5;

 font-size: 0.8rem;

 -moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 border-radius: 3px;

 border: none;

 padding: 10px 10px;

 width: 200px;

 margin-bottom: 20px;

 box-shadow: inset 0 2px 3px rgba(0, 0, 0, 0.1);

 clear: both;

}

.inputs:focus {

 background: #fff;

 box-shadow: 0 0 0 3px #fff38e, inset 0 2px 3px rgba(0, 0, 0, 0.2), 0px 5px 5px

rgba(0, 0, 0, 0.15);

 outline: none;

}

.inputss {

 background: #f5f5f5;

 font-size: 0.8rem;

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 28

 -moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 border-radius: 3px;

 border: none;

 padding: 10px 10px;

 width: 220px;

 margin-bottom: 20px;

 box-shadow: inset 0 2px 3px rgba(0, 0, 0, 0.1);

 clear: both;

}

.inputss:focus {

 background: #fff;

 box-shadow: 0 0 0 3px #fff38e, inset 0 2px 3px rgba(0, 0, 0, 0.2), 0px 5px 5px

rgba(0, 0, 0, 0.15);

 outline: none;

}

.button {

 background-color: #0096da; /* Green */

 border: none;

 color: white;

 padding: 10px 23px;

 text-align: center;

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 29

 text-decoration: none;

 display: inline-block;

 font-size: 16px;

}

</style>

<title>Registration</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link href="css/style.css" rel="stylesheet" type="text/css" />

<link rel="stylesheet" type="text/css" href="css/coin-slider.css" />

<script type="text/javascript" src="js/cufon-yui.js"></script>

<script type="text/javascript" src="js/droid_sans_400-

droid_sans_700.font.js"></script>

<script type="text/javascript" src="js/jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/script.js"></script>

<script type="text/javascript" src="js/coin-slider.min.js"></script>

</head>

 <%

 if (request.getParameter("msg") != null) {

 %>

 <script>alert('Registration Succesfully');</script>

 <%

 }

 %>

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 30

<body>

<div class="main">

 <div class="header">

 <div class="header_resize">

 <div class="logo">

 <h1>Secure Data Sharing in Cloud Computing Using Revocable-Storage

Identity-Based Encryption</h1>

 </div>

 <div class="searchform">

 <form id="formsearch" name="formsearch" method="post" action="#">

 <input name="editbox_search" class="editbox_search" id="editbox_search"

maxlength="80" value="Search our ste:" type="text" />

 <input name="button_search" src="images/search.gif" class="button_search"

type="image" />

 </form>

 </div>

 <div class="clr"></div>

 <div class="menu_nav">

 Home Page

 Data Provider

 User

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 31

 Auditor

 <li class="active">Registration

 </div>

 <div class="clr"></div>

 <div class="slider">

 <div id="coin-slider"> <img src="images/slide1.jpg" width="960"

height="335" alt="" /> <img src="images/slide2.jpg" width="960"

height="335" alt="" /> <img src="images/slide3.jpg" width="960"

height="335" alt="" /> </div>

 <div class="clr"></div>

 </div>

 <div class="clr"></div>

 </div>

 </div>

 <div class="content">

 <div class="content_resize">

 <div class="mainbar">

 <div class="article">

 <h2>Registration</h2>

 <div class="clr"></div>

 <!---star Body -->

 <form action="login.jsp" method="get" >

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 32

 <input type="text"class="inputs" name="name" required="" placeholder="Your

Name" />

 <input type="password"class="inputs" name="pass" required=""

placeholder="Password" />

 <input type="email"class="inputs" name="email" required="" placeholder="e-

mail" />

 <input type="date"class="inputs" name="dob" required="" placeholder="Date Of

Birth" />

 <select class="inputss" required="" name="gen" >

 <option value="select">Gender</option>

 <option value="male">Male</option>

 <option value="female">Female</option>

 </select>

 <select class="inputss" required="" name="role" >

 <option value="select">Role</option>

 <option value="Provider">Data Provider</option>

 <option value="User">User</option>

 </select>

 <input type="text"class="inputs" name="state" required="" placeholder="State"

/>

 <input type="text"class="inputs" name="country" required=""

placeholder="Country" />

 <input type="hidden" value="3" name="status" />

 <input type="Submit" value="Register" class="button" >

 </form>

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 33

 <!---End Body -->

</div>

 </div>

 <div class="sidebar">

 <div class="gadget">

 <h2 class="star">Sidebar Menu</h2>

 <div class="clr"></div>

 <ul class="sb_menu">

 Home

 Data Provider

 User

 Auditor

 Registration

 </div>

 </div>

 <div class="clr"></div>

 </div>

 </div>

<div class="footer">

 <div class="footer_resize">

 <p class="lf">Copyright © Jpinfotech</p>

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 34

 <p class="rf">Design by Ajay</p>

 <div style="clear:both;"></div>

 </div>

 </div>

</div>

</body>

</html>

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 35

4.3 RESULTS

4.3.1 SCREENS:

 Figure 4.6: Home Page.

Description:

 This is the home page of our project.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 36

 Figure 4.7 :Registration Page.

Description:

 This is the page where user and data provider register.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 37

 Figure 4.8: Data Provider Login Page.

Description:

 This is the page where data provider login.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 38

 Figure 4.9: Uploading Page.

Description:

 This is the page where data provider upload the files.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 39

 Figure 4.10: Cloud DriveHQ page.

Description:

 This is the page where we store our cloud.The name of our cloud is DriveHQ

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 40

 Figure 4.11: Folder page in DriveHq.

Description:

 This is the page where our files are stored in DriveHQ cloud.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 41

 Figure 4.12: Viewing the uploaded file details page.

Description:

 This is the page where we can see details of uploaded files.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 42

 Figure 4.13: Updating the file page.

Description:

 This is the page where data provider updates the page.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 43

 Figure 4.14: User Login Page.

 Description:

 This is the page where user login.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 44

 Figure 4.15: User sending request page.

Description:

 This is the page where user sends request.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 45

 Figure 4.16: Auditor Login Page.

Description:

 This is the page where auditor login.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 46

 Figure 4.17: Viewing the data provider details page.

Description:

 This is the page where auditor uploads details of data provider.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 47

 Figure 4.18: Viewing the user details page.

Description:

 This is the page where auditor uploads details of user.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 48

 Figure 4.19: Viewing the user requests page.

Description:

 This is the page where we can see the requests of the user.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 49

 Figure 4.20: Sending secret key page.

Description:

 This is the page where auditor sends the secret key to the respected mail.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 50

 Figure 4.21: Page where user enters secret key for downloading or viewing file.

Description:

 This is the page where user can download or view the file by using the secret key that

has been sent to his mail.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 51

 CHAPTER- 5

 SYSTEM TESTING

 The purpose of testing is to discover errors. Testing is the process of trying to

discover every conceivable fault or weakness in a work product. It provides a way to

check the functionality of components, sub assemblies, assemblies and/or a finished

product It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an

unacceptable manner. There are various types of test. Each test type addresses a specific

testing requirement.

5.1 TYPES OF TESTS

5.1.1 Unit testing

 Unit testing involves the design of test cases that validate that the internal program

logic is functioning properly, and that program inputs produce valid outputs. All decision

branches and internal code flow should be validated. It is the testing of individual

software units of the application .it is done after the completion of an individual unit

before integration. This is a structural testing, that relies on knowledge of its construction

and is invasive. Unit tests perform basic tests at component level and test a specific

business process, application, and/or system configuration. Unit tests ensure that each

unique path of a business process performs accurately to the documented specifications

and contains clearly defined inputs and expected results.

5.1.2 Integration testing

 Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate that

although the components were individually satisfaction, as shown by successfully unit

testing, the combination of components is correct and consistent. Integration testing is

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 52

specifically aimed at exposing the problems that arise from the combination of

components.

5.1.3 Functional test

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system documentation,

and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes, and successive processes must

be considered for testing. Before functional testing is complete, additional tests are

identified and the effective value of current tests is determined.

5.1.4 System Test

 System testing ensures that the entire integrated software system meets requirements.

It tests a configuration to ensure known and predictable results. An example of system

testing is the configuration oriented system integration test. System testing is based on

process descriptions and flows, emphasizing pre-driven process links and integration

points.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 53

5.1.5 White Box Testing

 White Box Testing is a testing in which in which the software tester has knowledge

of the inner workings, structure and language of the software, or at least its purpose. It is

purpose. It is used to test areas that cannot be reached from a black box level.

5.1.6 Black Box Testing

 Black Box Testing is testing the software without any knowledge of the inner

workings, structure or language of the module being tested. Black box tests, as most other

kinds of tests, must be written from a definitive source document, such as specification or

requirements document, such as specification or requirements document. It is a testing in

which the software under test is treated, as a black box .you cannot “see” into it. The test

provides inputs and responds to outputs without considering how the software works.

5.1.7 Acceptance Testing

 User Acceptance Testing is a critical phase of any project and requires significant

participation by the end user. It also ensures that the system meets the functional

requirements.

Test Case

Name

Test Case

Description

Test Steps Test

Case

Status
Step Expected Actual

Upload file User has to

upload file
If we

uploaded

the file

Encrypted file

uploaded

successfully

Encrypted

file uploaded

successfully

Pass

Update file User has to

update file
If we

updated the

file

File is

updated

successfully

File is

updated

successfully

Pass

View file User can view

the file

Files are

uploaded

User can view

the file

User can

view the file

Pass

Secret key We get secret

from auditor

Secret key

should be

entered

Secret key has

been sent to

email id

Secret key

has been sent

to email id

Pass

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 54

Verification

of secret

key

We has to

enter secret

key

Secret key

has been

sent to

email id

Verified

successfully
Verified

successfully
Pass

Download

file
If user want to

download
User

download

the by

entering

secret key

Downloaded

Successfully
Downloaded

Successfully
Pass

Test Results:

All the test cases mentioned above passed successfully. No defects encountered.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 55

CHAPTER - 6

CONCLUSION

 Cloud computing brings great convenience for people. Particularly, it perfectly

matches the increased need of sharing data over the Internet. In this paper, to build a cost-

effective and secure data sharing system in cloud computing, we proposed a notion called

RS-IBE, which supports identity revocation and ciphertext update simultaneously such

that a revoked user is prevented from accessing previously shared data, as well as

subsequently shared data. Furthermore, a concrete construction of RS-IBE is presented.

The proposed RS-IBE scheme is proved adaptive-secure in the standard model, under the

decisional ℓ-DBHE assumption. The comparison results demonstrate that our scheme has

advantages in terms of efficiency and functionality, and thus is more feasible for practical

applications.

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 56

CHAPTER - 7

 REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the

clouds: towards a cloud definition,” ACM SIGCOMM Computer Communication

Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] iCloud. (2014) Apple storage service. [Online]. Available: https://www.icloud.com/

[3] Azure. (2014) Azure storage service. [Online]. Available:

http://www.windowsazure.com/

[4] Amazon. (2014) Amazon simple storage service (amazon s3).[Online]. Available:

http://aws.amazon.com/s3/

[5] K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana, “Social cloud computing: A

vision for socially motivated resource sharing,” Services Computing, IEEE Transactions

on, vol. 5, no. 4, pp. 551–563, 2012.

[6] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy preserving public

auditing for secure cloud storage,” Computers, IEEE Transactions on, vol. 62, no. 2, pp.

362–375, 2013.

[7] G. Anthes, “Security in the cloud,” Communications of the ACM, vol. 53, no. 11, pp.

16–18, 2010.

[8] K. Yang and X. Jia, “An efficient and secure dynamic auditing protocol for data

storage in cloud computing,” Parallel and Distributed Systems, IEEE Transactions on,

vol. 24, no. 9, pp. 1717–1726, 2013.

https://www.icloud.com/

Secure Data Sharing in Cloud Computing using revocable storage identity based encryption

Dept. of CSE, RGMCET (Autonomous) 57

[9] B. Wang, B. Li, and H. Li, “Public auditing for shared data with efficient user

revocation in the cloud,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 2904–

2912.

[10] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized access control with

anonymous authentication of data stored in clouds,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 25, no. 2, pp. 384–394, 2014.

